Found this so think we are both right
The normally aspirated 90-degree 2.4-litre 18,000 rpm V8s were relatively uncomplicated, even with their KERS. But the new 90-degree 1.6-litre 15,000 rpm V6s are far more complex. The turbocharger reappears for the first time since 1988, but there are also two forms of energy harvesting, using two separate Motor Generator Units (MGU), which convert mechanical and heat energy to electrical energy and vice versa.
The MGU-K works like an uprated version of KERS, converting kinetic energy generated under braking into electricity (rather than it escaping as heat). It also acts as a motor under acceleration, returning power to the drivetrain from the Energy Store (ES). The MGU-H, meanwhile, is connected to the turbocharger and converts heat energy from exhaust gases into electrical energy. The energy can then be used to power the MGU-K (and thus the drivetrain) or be retained in the ES for subsequent use. The MGU-H also controls the speed of the turbo, speeding it up (to prevent turbo lag) or slowing it down in place of a more traditional wastegate.
The basic engine produces around 447 kW (600 bhp), but compared to 2013 KERS, the new ERS has twice the power (120 kW [160 bhp] as opposed to 60 kW [80 bhp]) for 33s a lap. That’s twice as much power for nearly five times longer than the V8’s system and a performance effect around 10 times greater. Thus the V6s, turbocharged at 3.4 bar (50 psi) will develop similar power overall to the V8s, 567 kW (760 bhp). And there will be far more torque - 425 Nm (570 lb ft) at 10,500 rpm even without the energy recovery systems, as opposed to 300 Nm (402 lb ft) at 17,500 rpm last year. The new energy systems deploy automatically according to the chosen mapping, rather than needing to be selected by the driver, and electronic fly-by-wire rear braking is allowed to cope with the altered characteristics of the brake energy harvesting.